Fife LDP,
 Dunfermline Land Allocations, Candidate Sites

Fife Council

S-Paramics Assessment

FIFE LDP, DUNFERMLINE LAND ALLOCATIONS CANDIDATE SITES

Description: S-Paramics Assessment
Date:
08 June 2015
Project Manager: Allan Spence
Project Director: Allan Spence

SIAS Limited
37 Manor Place
Edinburgh EH3 7EB
UK
tel: 0131-225 7900
fax: 0131-225 9229
admin@sias.com
www.sias.com

FIFE LDP, DUNFERMLINE LAND ALLOCATIONS CANDIDATE SITES

CONTENTS :

1 INTRODUCTION 1
1.1 Background 1
1.2 Purpose of Report 1
1.3 Development Sites 2
2 MODEL DEVELOPMENT 3
2.12029 with Full SLA Development Model 3
2.22029 with Candidate Sites Model 3
3 CANDIDATE SITES, MATRIX DEVELOPMENT 7
4 MODELLING RESULTS 9
4.1 Peak Hour Flow Comparison 9
4.2 Journey Time Comparison 11
4.3 Public Transport Journey Times 12
4.4 Global Queue Statistics 13
4.5 Global Summary Statistics 14
4.6 Effect of NLR of Routeing 15
5 SUMMARY OF RESULTS 17
A 2029 JOURNEY TIME ANALYSIS 19
B 2029 TOWN CENTRE QUEUE SUMMARY 23

FIFE LDP, DUNFERMLINE LAND ALLOCATIONS CANDIDATE SITES

FIGURES :

Page
Figure 2.1 : Candidate Sites, Indicative Location 4
Figure 2.2 : The infrastructure changes in the 2029 with Candidate Sites Model 5
Figure 4.1 : Journey Time Routes 11
Figure 4.2 : Average Queued Vehicles (AM Peak) 13
Figure 4.3 : Average Queued Vehicles (PM Peak) 14
Figure A. 1 : Route 1 Northbound, Journey Times (AM Peak) 19
Figure A. 2 : Route 1 Northbound, Journey Times (PM Peak) 19
Figure A. 3 : Route 1 Southbound, Journey Times (AM Peak) 20
Figure A. 4 : Route 1 Southbound, Journey Times (PM Peak) 20
Figure A. 5 : Route 3 Eastbound, Journey Times (AM Peak) 21
Figure A. 6 : Route 3 Eastbound, Journey Times (PM Peak) 21
Figure A. 7 : Route 3 Westbound, Journey Times (AM Peak) 22
Figure A. 8 : Route 3 Westbound, Journey Times (PM Peak) 22
Figure B. 1 : Average Queued vehicles in Town Centre, Local Plan Phasing (AM Peak) 23
Figure B. 2 : Average Queued vehicles in Town Centre, Local Plan Phasing (PM Peak) 23

FIFE LDP, DUNFERMLINE LAND ALLOCATIONS CANDIDATE SITES

TABLES :

Page
Table 1.1 : Candidate Sites 2
Table 3.1 : the 2029 with Candidate Sites, Total number of trips 7
Table 3.2 : Total number of trips in AM period: DUN 029 a/b, DUN 036, DUN 038, and DUN 039 7
Table 3.3 : Total number of trips in AM period: DUN 041, DUN 042 and DUN 043, and DUN 044 7
Table 3.4 : Total number of trips in AM period: DUN 045, DUN 046, and KST 001 8
Table 3.5 : Total number of trips in PM period: DUN 029 a/b, DUN 036, DUN 038, and DUN 039 8
Table 3.6 : Total number of trips in PM period: DUN 041, DUN 042, DUN 043, and DUN 044 8
Table 3.7 : Total number of trips in PM period: DUN 045, DUN 046, and KST 001 8
Table 4.1 : Peak Hour flow (veh/hr) 10
Table 4.2 : Passenger Transport Journey Time Routes (AM Period) 12
Table 4.3 : Passenger Transport Journey Time Routes (PM Period) 13
Table 4.4 : Network summary Statistics, AM Period 14
Table 4.5 : Network summary Statistics, PM Period 15
Table 4.6 : Routeing of Through Trips on East West Axis (Both Directions) AM \& PM Periods 15

1 INTRODUCTION

1.1 Background

FIFEplan, the Fife Local Development Plan (LDP) is currently under preparation. It includes the development contained in the adopted Fife Development Plan (FDP) and the additional housing development identified through the SESplan Supplementary Guidance.

As part of the SESplan Supplementary Guidance, the amount of new housing required between 2009 -- 2024 increases beyond that already adopted in the FDP by 7,870 housing units. There are proposed sites for the additional housing development areas, which must be assessed in terms of transportation impacts to ensure that they are located in a suitably accessible location which enables the transport network to function efficiently. Before the final decision on the suitability of the additional housing land can be made, a supporting transport appraisal of the additional land allocations is required to be undertaken and suitable transport interventions identified.

Peter Brett Associates (PBA) has undertaken area wide modelling work to determine the impact on the trunk road network of the development proposed within the LDP, to assess whether the additional housing proposed within the SESplan Supplementary Guidance (SG) could be accommodated by existing infrastructure and the infrastructure already proposed in the FDP. That study considered the transport interventions already proposed within the FDP and sought to identify whether additional transport interventions were necessary to deliver the LDP.

The finding were presented in the PBA Report Fife LDP Modelling Rev 2.3 (19 May 2015), which concluded that the identified trunk road infrastructure was sufficient to accommodate the additional traffic associated with proposed housing allocations.

1.2 Purpose of Report

The purpose of this study is to consider the impacts of the new additional housing proposed in the SESplan SG, focussed on Dunfermline and the local road network only. The study is to determine whether the proposals could be accommodated by existing infrastructure and the infrastructure already proposed in the FDP.

In 2011, SIAS prepared a Report entitled Dunfermline Strategic Land Allocation Transport Assessment (SIAS Ref. 73799, July 2011) which presented the findings of an S-Paramics modelling exercise which considered the traffic impacts of the following four sites in Dunfermline with associated infrastructure improvements:

- Wellwood
- Berrylaw
- Liggar Bridge
- Broomhall

The following elements from that previous study have been incorporated into this current exercise:

- S-Paramics model
- Person trip generation
- Vehicle trip distribution

1.3 Development Sites

Fife Council has supplied a full list of housing development sites to be included in the LDP modelling scenarios. Sites were classified into the following broad categories:

- Carried forward from adopted LP

Committed sites from existing local plans, including Strategic Development Areas

- Carried forward from adopted LP with changes

Committed local plan sites which have been subject to revision through the LDP process

- New proposal (New development sites, referred to in this Report as Candidate Sites) New sites proposed since the adopted LP

The Candidate Sites included in this assessment are listed in Table 1.1.
Table 1.1 : Candidate Sites

REF_ID	Location	Estimated Capacit)
KST 001	Kingseat	50
DUN 029a/b	Lynebank Hospital	100
DUN 036	Elliot Street	19
DUN 038	Kent Street	120
DUN 039	N Dunf (Colton)	300
DUN 041	N Dunf (Swallowdrum)	900
DUN 042	Carnock Road	30
DUN 043	Halbeath	1400
DUN 044	Land North of Wellwood	100
DUN 045	Rosegreen, Carnock Rd	100
DUN 046	Chamberfield	50
Total		$\mathbf{3 1 6 9}$

A total of 3,169 new residential units have been considered in this assessment.

2 MODEL DEVELOPMENT

2.12029 with Full SLA Development Model

The 2029 Infrastructure with Full SLA Development model was reported in SIAS's Report Dunfermline SLA Transport Assessment (SIAS Ref. 73799).

The 2029 Infrastructure Full SLA model included the following:

- 100% Broomhall Employment and Residential development (126.2Ha/1,972 Units)
- 100\% Wellwood Employment and Residential development (22.4Ha/1,085 Units
- 100\% Liggar Bridge Employment and Residential development (2.4Ha/1,063 Units)
- 100\% Berrylaw Employment and Residential development (9.8 Ha/665 Units)

This gave a total of 4,785 residential units.

2.22029 with Candidate Sites Model

The 2029 with Candidate Sites Model has been developed from the 2029 Infrastructure Full SLA Model with inclusion of candidate sites and agreed infrastructure changes.

The whole extent of the Northern Link Road (NLR) has been included in the Candidate sites model.

The locations of the proposed housing candidate sites, together with the estimated number of houses related to each site, are shown in Figure 2.1.

Figure 2.1 : Candidate Sites, Indicative Location
With the introduction of the housing development in the 2029 with Candidate Sites Model, the indicative NLR and related junction layouts have been coded in the model as indicated in Figure 2.2.

Figure 2.2 : The infrastructure changes in the 2029 with Candidate Sites Model
The extended NLR runs along the northern periphery of Dunfermline, and connects the A907 at Carnock Road to the west with Halbeath Road to the east. The connections to existing road and junctions coded into the 2029 Infrastructure Full SLA Model are set out as follows:

- At its western end, a new roundabout with the A907 and Lundin Road.
- Connects to the signalised junction on the A823 which is already in place in the 2029 Infrastructure Full SLA Model.
- New signalised junction with Townhill Road south of Townhill.
- Kingseat Road to the east of Townhill Road is realigned to connect to the NLR, forming a priority junction.
- The Kingseat Road/Whitefield Road/The B912 signalised junction is reconfigured compared to that included in the 2029 Infrastructure Full SLA Model.
- The level crossing on Kingseat Road, north of Halbeath Road, is assumed to be closed. Kingseat road to the north of the railway line is realigned to join the NLR at a priority junction.

The matrices were developed on the basis of calculating the total number of person trips generated by each development, then applying a mode split. The same methodology was applied as in the 2029 Infrastructure Full SLA Model.

Table 3.1 shows total number of car trips associated with the Candidate sites, assuming a mode split of 0.41 .

In this 2029 with Candidate Sites assessment, it was agreed that the mode split should be increased to 0.51 .

In line with the methodology used for the 2029 Infrastructure Full SLA Model, it is also assumed that 30% of the trips are to other developments when all developments are in place. These trips are then taken from the Candidate Sites out during the AM period and from the Candidate Sites in for the PM period.

The resulting AM and PM trip totals are shown in Table 3.1.
Table 3.1 : the 2029 with Candidate Sites, Total number of trips

	In	Out
AM totals	1,150	2,073
PM totals	2,118	2,109

The total number of trips for each of the candidate sites in AM and PM periods are shown in Table 3.2 to Table 3.7.

Table 3.2 : Total number of trips in AM period: DUN 029 a/b, DUN 036, DUN 038, and DUN 039

	DUN O29 a/b								DUN 036			DUN 038		DUN 039	
Residential	IN	OUT	IN	OUT	IN	OUT	IN	OUT							
07:00-08:00	6	20	1	4	7	24	18	61							
08:00-09:00	14	56	3	11	16	67	41	167							
09:00-10:00	17	17	3	3	20	21	50	52							
AM TOTAL	36	65	7	12	44	78	109	196							

Table 3.3 : Total number of trips in AM period: DUN 041, DUN 042 and DUN 043, and DUN 044

	DUN 041		DUN 042		DUN 043		DUN 044	
Residential	IN	OUT	IN	OUT	IN	OUT	IN	OUT
07:00-08:00	55	184	2	6	86	286	6	20
08:00-09:00	122	502	4	17	190	780	14	56
09:00-10:00	150	156	5	5	233	242	17	17
AM TOTAL	327	589	11	20	508	916	36	65

Table 3.4 : Total number of trips in AM period: DUN 045, DUN 046, and KST 001

Residential	DUN 045		DUN 046		KST 001	
	IN	OUT	IN	OUT	IN	OUT
07:00-08:00	6	20	3	10	3	10
08:00-09:00	14	56	7	28	7	28
09:00-10:00	17	17	8	9	8	9
AM TOTAL	36	65	18	33	18	33

Table 3.5 : Total number of trips in PM period: DUN 029 a/b, DUN 036, DUN 038, and DUN 039

	DUN 029 a/b	DUN 036		DUN 038		DUN 039		
Residential	IN	OUT	IN	OUT	IN	OUT	IN	OUT
16:00-17:00	33	22	6	4	40	27	99	67
17:00-18:00	37	21	7	4	45	26	112	64
18:00-19:00	25	23	5	4	30	27	75	69
PM TOTAL	67	67	13	13	80	80	200	200

Table 3.6 : Total number of trips in PM period: DUN 041, DUN 042, DUN 043, and DUN 044

	DUN O41		DUN 042		DUN 043		DUN 044	
Residential	IN	OUT	IN	OUT	IN	OUT	IN	OUT
16:00-17:00	297	200	10	7	462	311	33	22
17:00-18:00	336	193	11	6	522	300	37	21
18:00-19:00	226	206	8	7	352	321	25	23
PM TOTAL	601	599	20	20	936	932	67	67

Table 3.7 : Total number of trips in PM period: DUN 045, DUN 046, and KST 001

	DUN 045		DUN 046	KST 001		
Residential	IN	OUT	IN	OUT	IN	OUT
16:00-17:00	33	22	17	11	17	11
17:00-18:00	37	21	19	11	19	11
18:00-19:00	25	23	13	11	13	11
PM TOTAL	67	67	33	33	33	33

4

MODELLING RESULTS

A comparison of the model statistics has been undertaken comparing the following:

- 2029 Infrastructure Full SLA
- 2029 with Candidate Sites

The statistics that have been compared are:

- Peak Hour Flows
- Journey times for key corridors
- Public transport journey times
- Global and town centre queue statistics
- Global network statistics

These were the key statistics reported in the 2029 Infrastructure Full SLA Model, so a direct comparison can be made.

4.1 Peak Hour Flow Comparison

Table 4.1 contains a flow summary of the key links on the network for the AM (08:00 - 09:00) and PM (17:00 - 18:00) peak hours for the 2029 Infrastructure Full SLA and the 2029 with Candidate Sites.

Table 4.1 : Peak Hour flow (veh/hr)

		AM		PM	
		2029		2029	
		Infrastructure	2029 with	Infrastructure	2029 with
Location	Direction	Full SLA	Candidate Sites	Full SLA	Candidate Sites
William Street	NB	967	1,118	1,597	1,591
	SB	1,016	1,030	765	844
Baldridgeburn	EB	1,104	1,240	966	1,128
	WB	451	483	569	627
Pilmuir Street	NB	279	270	302	319
	SB	495	524	463	408
Carnegie Drive	EB	1,185	1,301	955	962
	WB	536	534	605	627
Townhill Street	NB	275	273	561	602
	SB	687	702	796	887
Appin Crescent	EB	696	674	1,107	1,155
	WB	1,148	1,090	898	834
Halbeath Rd (E)	EB	1,485	1,538	1,511	1,504
	WB	1,718	1,781	1,719	1,816
St Margarets Drive	NB	1,322	1,182	1,854	1,767
	SB	2,361	2,280	2,079	1,895
Netherton Brd St	EB	513	515	737	748
	WB	1,031	949	1,087	966
Queensferry Rd (N)	NB	1,231	976	1,618	1,492
	SB	1,620	1,553	1,422	1,371
Queensferry Rd (S)	NB	1,604	1,329	1,734	1,578
	SB	1,744	1,792	1,536	1,516
Limekilns Rd	NB	227	340	282	321
	SB	344	413	324	392
Grange Road	NB	369	527	347	434
	SB	216	210	486	406
A985 Rosyth	EB	867	973	740	792
	WB	788	799	895	853
A823(M)	EB	1,225	1,133	1,553	1,446
	WB	1,785	1,653	1,178	1,176
Coal Road	SB	1,265	1,236	849	1,022
	NB	898	962	1,454	1,379
Western Distributor Roa	SB	869	871	390	420
	NB	369	454	789	968
Broomhall Road	EB	1,013	1,116	1,337	1,295
	WB	1,241	1,230	930	1,127
East Distrbutor Road	EB	933	1,110	1,118	1,052
	WB	1,050	939	827	951
Northern Link road	EB	375	743	709	819
	WB	692	1,133	516	1,023

From Table 4.1 it can be seen that flows are generally greater with the Candidate Sites, as would be expected. There are no significant increases, but this may reflect that many of the roads are already close to capacity in the 2029 Infrastructure Full SLA scenario.

4.2 Journey Time Comparison

Journey time comparisons for two strategic routes through Dunfermline have been compared for the 2029 Infrastructure Full SLA and 2029 with Candidate Sites. The routes are as described as follows and detailed in Figure 4.1:

- Route 1: Follows the A823 from Sinclair Gardens Roundabout to Queensferry Road/ Carnegie Avenue Roundabout, along St Margarets Drive, Bothwell Street, Hospital Hill and Queensferry Road (Queensferry Road Corridor)
- Route 3: Follows the A907 from Sinclair Gardens Roundabout to Halbeath Interchange, along Halbeath Road (Halbeath Corridor)

Figure 4.1 : Journey Time Routes

The journey time comparisons for the 2029 Infrastructure Full SLA and with Candidate Sites are shown in Appendix A.

4.2.1 Results for Route 1: Queensferry Road corridor

The northbound analysis shows that with the Candidate Sites in place, the journey times in the AM period are longer than in the 2029 Infrastructure Full SLA model, with the difference varying during the simulation period. In the PM period, the northbound journey time in the 2029 with Candidate Sites scenario is generally longer than in the 2029 Infrastructure Full SLA scenario.

In the Southbound direction AM period, the results show that with the Candidate Sites in place, the journey time are similar in both models up until 09:30. In the 2029 Infrastructure Full SLA model, journey times tend to reduce thereafter, while in the 2029 with Candidate Sites model, any changes are not as marked. In the PM period, the journey times are similar in both scenarios.

The patterns between the two scenarios are similar, with journey times generally longer in the 2029 with Candidate Sites model.

4.2.2 Results for Route 3: Halbeath Corridor

The eastbound analysis suggests that the journey times are similar in both models for the AM and PM period.

In the westbound direction, with the Candidate Sites in place, the journey times during the AM period are longer than in the 2029 Infrastructure Full SLA; this is most pronounced between 09:05 - 09:40 where journey times are generally 10 min longer in the 2029 with Candidate Sites model. In the PM period, the journey times in the 2029 with Candidate Sites model are slightly longer than in the 2029 Infrastructure Full SLA.

The patterns between the two scenarios are similar, with journey times generally longer in the 2029 with Candidate Sites model.

4.3 Public Transport Journey Times

Table 4.2 and Table 4.3 show the average journey times for key town centre passenger transport routes for the AM and PM peak periods.

Table 4.2 : Passenger Transport Journey Time Routes (AM Period)

AM	$\mathbf{2 0 2 9}$ Infrastructure Full SLA	2030 with Candidate Sites	Difference
$7 \& 19$ Nbd	$00: 33: 53$	$00: 41: 39$	$-00: 07: 49$
7 \& 19 Sbd	$00: 26: 32$	$00: 19: 48$	$+00: 06: 45$
33 Wbd contd 1	$00: 13: 49$	$00: 20: 18$	$-00: 06: 29$
33 Ebd	$00: 12: 49$	$00: 30: 46$	$-00: 17: 57$
55 Nbd	$00: 37: 12$	$00: 40: 20$	$-00: 03: 08$
55 Sbd	$00: 26: 44$	$00: 21: 38$	$+00: 05: 05$

Table 4.2 shows that in the AM peak period with the Candidate Sites in place, there is a variation in the bus journey times, with some longer and some shorter. The greatest difference is with the 33 Eastbound route, where the journey times are nearly 18 min longer. The increase in journey time is a concern, but bus priority measures can be incorporated within the detailed design of the transportation mitigation measures to reduce the adverse impact on journey times.

Table 4.3 : Passenger Transport Journey Time Routes (PM Period)

PM	2029 Infrastructure Full SLA	2030 with Candidate Sites	Difference
7 \& 19 Nbd	$00: 25: 20$	$00: 17: 13$	$+00: 08: 07$
7 \& 19 Sbd	$00: 25: 10$	$00: 16: 32$	$+00: 08: 38$
33 Wbd contd 1	$00: 11: 49$	$00: 25: 11$	$-00: 13: 22$
33 Ebd	$00: 15: 30$	$00: 12: 17$	$+00: 03: 13$
55 Nbd	$00: 21: 42$	$00: 29: 54$	$-00: 08: 12$
55 Sbd	$00: 27: 08$	$00: 21: 11$	$+00: 05: 57$

Table 4.3 shows that in the PM peak period with the Candidate Sites in place, there is a variation in the bus journey times, with some longer and some shorter. The greatest difference is with the 33 Westbound route, where the journey times are nearly 13min longer.

4.4 Global Queue Statistics

Figure 4.2 and Figure 4.3 shows the average number of vehicles queueing across the whole model for the 2029 Infrastructure Full SLA and 2029 with Candidate Sites in place for the AM and $P M$ periods.

Figure 4.2 : Average Queued Vehicles (AM Peak)
In the AM period, the level of queueing with Candidate Sites in place is similar, with the time periods over which queueing occurs the only difference.

Figure 4.3 : Average Queued Vehicles (PM Peak)
The PM period is consistent with the AM period, where the level of queueing with Candidate Sites in place is similar; the time periods over which queueing occurs is the only difference.

Appendix B contains figures showing the levels of queueing in the town centre cordon for the AM and PM peak period.

The level of queueing with Candidate Sites in place is similar in the AM period, with the time periods over which queueing occurs the principal difference.

There is a similar pattern in the PM peak, although the queueing with the Candidate sites does not dissipate as noticeably as it does in the 2029 Infrastructure Full SLA model.

4.5 Global Summary Statistics

The network summary statistics have been extracted for each model and are detailed in Table 4.4 and Table 4.5 for the AM and PM periods respectively.

Table 4.4 : Network summary Statistics, AM Period

Scenario	Total Network Time (hours)	Total Distance (km)	Vehicles	Average Network Speed (mph)	Average Journey Time (sec)
2029 Infrastructure Full SLA	11,260	265,974	74,878	14.7	541
2030 with					
Candidate Sites	14,876	282,330	78,036	11.8	686

Table 4.4 shows the model has approximately 3,158 additional vehicles in the AM period. The average speed reduces from 14.7 mph to 11.8 mph while average journey times increase by $2 m i n 25$ s.

Table 4.5 : Network summary Statistics, PM Period

	Total Network Time hours)	Total Distance $(\mathbf{k m})$	Vehicles	Average Network Speed (mph)	Average Journey Time (sec)
Scenario	11,475	299,904	86,400	16.2	478
2029 Infrastructure					
Full SLA	18,325	325,570	90,634	11.1	728
2030 with					
Candidate Sites					

Table 4.5 shows the model has approximately 4,234 additional vehicles in the PM period. The average speed reduces from 16.27 mph to 11.1 mph while average journey times increase by 4min 10s.

4.6 Effect of NLR of Routeing

An assessment was made of the effect the NLR has on longer distance routes that pass through Dunfermline in each direction along the east-west axis between the A92 at Halbeath to the east, and the A907 at Carnock Road to the west. The results are shown in Table 4.6.

Table 4.6 : Routeing of Through Trips on East West Axis (Both Directions) AM \& PM Periods
AM

Zone Origin A907 west (Zone 149)	A92 at Halbeath (Zone 133)		
	$\begin{gathered} \text { Via NLR } \\ 212 \end{gathered}$	Via town 124	$\begin{gathered} \text { Total } \\ 336 \end{gathered}$
PM			
	A92 at Halbeath (Zone 133)		
Zone Origin A907 west (Zone 149)	$\begin{gathered} \text { Via NLR } \\ 206 \end{gathered}$	Via town 131	$\begin{aligned} & \text { Total } \\ & 337 \end{aligned}$
AM			
Zone Origin A92 at Halbeath (Zone 133)	$\begin{gathered} \text { Via NLR } \\ 163 \end{gathered}$	west (Zone Via town 55	$\begin{gathered} \text { Total } \\ 218 \end{gathered}$
PM			
Zone Origin A92 at Halbeath (Zone 133)	$\begin{gathered} \text { Via NLR } \\ 148 \end{gathered}$	west (Zone Via town 67	$\begin{aligned} & \text { Total } \\ & 215 \end{aligned}$

In the AM, 63\% of the eastbound trips (212/336) and 75\% (163/218) of west bound trips use the NLR as opposed to passing through the town.

The corresponding figures for the PM are 61\% (206/337) eastbound and $69 \% 148 / 215$) westbound. This suggests that the NLR will play a strategic role in the road hierarchy for longer distance trips as well as serving local trips.

The 2011 SIAS Report Dunfermline Strategic Land Allocation Transport Assessment (SIAS Ref. 73799, July 2011) provides a useful background to this study and should be read in conjunction with this Report. The 2011 Report (SIAS Ref. 73799) presented results which suggested that the various housing scenarios tested could be accommodated on the road network with appropriate physical mitigation measures being implemented to provide additional capacity on the road network. Given the urban make up of Dunfermline town centre, and the historic layout of many of its streets, it is not possible to continually deliver physical road capacity improvements within the space available.

This is particularly the case on arterial corridors such as Townhill Road, Pilmuir Street, and Baldridgeburn/Mill Street to the north of the town centre, where many of the roads have residential frontages along their length.

The town centre itself has seen an expansion and enhancement of the retail offer available, much of which is centred along Carnegie Drive. This reduces opportunities to deliver new road infrastructure to provide additional capacity.

The bridge over Tower Burn to the west of the town centre, which is limited to single lane operation in each direction, also acts as a constraint on road capacity.

In the future, it is likely that mitigation will comprise of a package of measures that do not solely rely on providing additional road capacity. With advancements in communication technology, it is likely that levels of home or remote working will continue to increase, as will on-line shopping; this change will, for many people, reduce the need to travel on a daily basis.

When considering the candidate housing proposals, it is likely that mitigation would include the housing sites being served by high speed broad band connections, which would allow people to work and shop for home should they have the opportunity or inclination to do so.

This assessment of the additional LDP allocation considers a worst case scenario, where all houses and employment land are built out and trip making is similar to historic trends. Neither of these outcomes are likely in reality and, therefore, the results need to be viewed in that context.

It should also be noted that the models run out (i.e. are free flowing and do not gridlock) and, therefore, the demand created by the additional land allocations can be catered for on the existing road network + identified transportation mitigation measures. In reality, the level of demand modelled, and the subsequent effect on journey times, speeds, and queueing, is unlikely to materialise.

The extension of the NLR will provide an alternative east-west route through Dunfermline which avoids the need to pass through the town centre. This will bring relief to routes that pass through the town centre, on the north-south axis as well as east-west axis. An assessment that considered these longer distance routes on the east-west axis in both directions from the A92 at Halbeath to the east, and the A907 at Carnock Road to the west showed that between 60% and 75% of trips may re-route and use the NLR. This suggests that the NLR will play a strategic role in the road hierarchy for longer distance trips, as well as serving local trips.

A 2029 JOURNEY TIME ANALYSIS

Figure A. 1 : Route 1 Northbound, Journey Times (AM Peak)

Figure A. 2 : Route 1 Northbound, Journey Times (PM Peak)

Figure A. 3 : Route 1 Southbound, Journey Times (AM Peak)

Figure A. 4 : Route 1 Southbound, Journey Times (PM Peak)

Figure A. 5 : Route 3 Eastbound, Journey Times (AM Peak)

Figure A. 6 : Route 3 Eastbound, Journey Times (PM Peak)

Journey Times - AM
Route 3 - Westbound

Figure A. 7 : Route 3 Westbound, Journey Times (AM Peak)

Figure A. 8 : Route 3 Westbound, Journey Times (PM Peak)

B 2029 TOWN CENTRE QUEUE SUMMARY

Figure B. 1 : Average Queued vehicles in Town Centre, Local Plan Phasing (AM Peak)

Figure B. 2 : Average Queued vehicles in Town Centre, Local Plan Phasing (PM Peak)

